Homotopy Perturbation Method to Obtain Positive Solutions of Nonlinear Boundary Value Problems of Fractional Order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy perturbation method for solving sixth-order boundary value problems

In this paper, we apply the homotopy perturbation method for solving the sixth-order boundary value problems by reformulating them as an equivalent system of integral equations. This equivalent formulation is obtained by using a suitable transformation. The analytical results of the integral equations have been obtained in terms of convergent series with easily computable components. Several ex...

متن کامل

Homotopy Perturbation Method with Reproducing Kernel Method for Third Order Nonlinear Boundary Value Problems

This method is based on a combination of the homotopy perturbation method (HPM) and the reproducing kernel method (RKM). The main advantages of this method is that it can overcome the restriction of the form of nonlinearity term in differential equations and improve the iterative speed of homotopy perturbation method. The solution obtained using the method takes the form of a convergent series ...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems

This paper is devoted to the existence of multiple positive solutions for fractional boundary value problem DC0+αu(t)=f(t, u(t), u'(t)), 0<t<1, u(1)=u'(1)=u''(0)=0, where 2<α≤3 is a real number, DC0+α is the Caputo fractional derivative, and f:[0,1]×[0, +∞)×R→[0, +∞) is continuous. Firstly, by constructing a special cone, applying Guo-Krasnoselskii's fixed point theorem and Leggett-Williams fix...

متن کامل

Positive Solutions of Second Order Nonlinear Difference Boundary Value Problems

We study a class of second order nonlinear difference boundary value problems with separated boundary conditions. A series of criteria are obtained for the existence of one, two, arbitrary number, and even an infinite number of positive solutions. A theorem for the nonexistence of positive solutions is also derived. Several examples are given to demonstrate the applications. Our results improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/919052